Plant Classification from Bat-Like Echolocation Signals
نویسندگان
چکیده
Classification of plants according to their echoes is an elementary component of bat behavior that plays an important role in spatial orientation and food acquisition. Vegetation echoes are, however, highly complex stochastic signals: from an acoustical point of view, a plant can be thought of as a three-dimensional array of leaves reflecting the emitted bat call. The received echo is therefore a superposition of many reflections. In this work we suggest that the classification of these echoes might not be such a troublesome routine for bats as formerly thought. We present a rather simple approach to classifying signals from a large database of plant echoes that were created by ensonifying plants with a frequency-modulated bat-like ultrasonic pulse. Our algorithm uses the spectrogram of a single echo from which it only uses features that are undoubtedly accessible to bats. We used a standard machine learning algorithm (SVM) to automatically extract suitable linear combinations of time and frequency cues from the spectrograms such that classification with high accuracy is enabled. This demonstrates that ultrasonic echoes are highly informative about the species membership of an ensonified plant, and that this information can be extracted with rather simple, biologically plausible analysis. Thus, our findings provide a new explanatory basis for the poorly understood observed abilities of bats in classifying vegetation and other complex objects.
منابع مشابه
Can two streams of auditory information be processed simultaneously ? Evidence from the gleaning bat
A tenet of auditory scene analysis is that we can fully process only one stream of auditory information at a time. We tested this assumption in a gleaning bat, the pallid bat (Antrozous pallidus) because this bat uses echolocation for general orientation, and relies heavily on prey-generated sounds to detect and locate its prey. It may therefore encounter situations in which the echolocation an...
متن کاملClassification of communication signals of the little brown bat.
Little brown bats, Myotis lucifugus, are known for their ability to echolocate and utilize their echolocation system to navigate, and locate and identify prey. Their echolocation signals have been characterized in detail but their communication signals are less well understood despite their widespread use during social interactions. The goal of this study was to develop an automatic classificat...
متن کاملCalling louder and longer: how bats use biosonar under severe acoustic interference from other bats.
Active-sensing systems such as echolocation provide animals with distinct advantages in dark environments. For social animals, however, like many bat species, active sensing can present problems as well: when many individuals emit bio-sonar calls simultaneously, detecting and recognizing the faint echoes generated by one's own calls amid the general cacophony of the group becomes challenging. T...
متن کاملMetabolic network analysis of the causes and evolution of enzyme dispensability in yeast
Daubenton’s bats Myotis daubentoni (Chiroptera: Vespertilionidae). J. Zool. 215, 113–132 (1988). 15. Krull, D., Schumm, A., Metzner, W. & Neuweiler, G. Foraging areas and foraging behavior in the notch-eared bat, Myotis emarginatus (Vespertilionidae). Behav. Ecol. Sociobiol. 28, 247–253 (1991). 16. Schumm, A., Krull, D. & Neuweiler, G. Echolocation in the notch-eared bat, Myotis emarginatus. Be...
متن کاملSuccessful Creation of Regular Patterns in Variant Maps from Bat Echolocation Calls
We report the creation of variant maps based on bat echolocation call recordings. The maps show regular patterns while characteristic features change when bat call recording properties change. By focusing on specific visual features, we found a set of projection parameters which allowed us to classify the variant maps into two distinct groups. These results are promising indicators that variant...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS Computational Biology
دوره 4 شماره
صفحات -
تاریخ انتشار 2008